

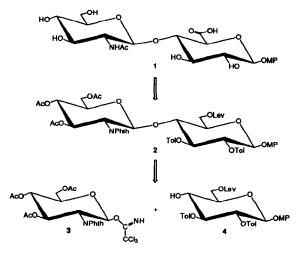
0957-4166(94)00310-6

Synthesis of hyaluronic acid related di- and tetra-saccharides having a glucuronic acid at the reducing end

Ted M. Slaghek^{a,#}, Teija K. Hyppönen^a, Tomoya Ogawa^b, Johannis P. Kamerling^a, and Johannes F. G. Vliegenthart^{a,*}

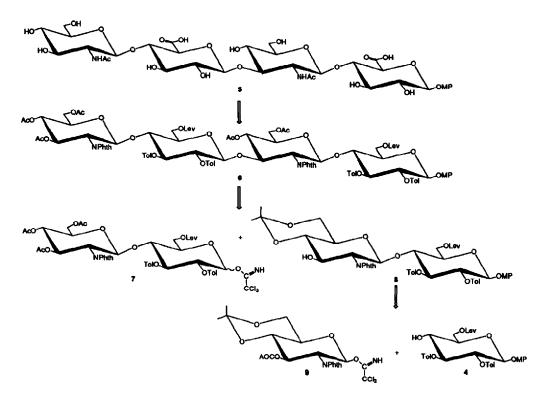
^a Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, P.O. Box 80.075, NL-3508 TB Utrecht, Netherlands ^b The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-01 Japan

* Present Address: Agricultural Research Institute (ATO-DLO), P.O. Box 17, NL-6700 AA Wageningen, Netherlands


Abstract: The synthesis is reported of 4-methoxyphenyl $O(2-acetam)do-2-deoxy-\beta-D-glucopyranosyl)-(1-+4)-\beta-$ D-glucopyranosyluronic acid (1) and 4-methoxyphenyl O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1-++)-O-(β-D-glucopyranosyluronic acid)- $(1 \rightarrow 3)$ -O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 4)$ - β -D-glucopyranosyluronic acid (5), which represent structural elements of hyaluronic acid. 3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido-B-Dglucopyranosyl trichloroacetimidate (3) was condensed with 4-methoxyphenyl 6-O-levulinoyl-2,3-di-O-p-toluoylβ-D-glucopyranoside (4) in dichloromethane, using boron trifluoride etherate as a promoter, yielding 4-methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1-+4)-6-O-levulinoyl-2,3-di-O-p-toluoyl-B-D-glucopyranoside (2). Subsequent delevalinoylation, oxidation, complete deprotection, and N-acetylation gave 1. Coupling of 3-O-allyloxycarbonyl-2-deoxy-4,6-O-isopropylidene-2-phthalimido-B-D-glucopyranosyl trichloroacetimidate (9) with 4, followed by de-allyloxycarbonylation of the obtained disaccharide derivative gave 4 $methoxyphenyl O-(2-deoxy-4, 6-O-isopropylidene-2-phthalimido-\beta-D-glucopyranosyl)-(1\rightarrow 4)-6-O-levulinoyl-2, 3-di-O-levulinoyl-2, 3-di-O$ O-p-toluoyl- β -D-glucopyranoside (8). Demethoxyphenylation and subsequent imidation of 2 afforded O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- $(1\rightarrow 4)$ -6-O-levulinoyl-2,3-di-O-p-toluoyl- α/β -D-glucopyranosyl trichloroacetimidate (7). Condensation of 7 with 8 in dichloromethane, with trimethylsilyl trifluoromethanesulfonate as a promoter, gave tetrasaccharide derivative 15. Subsequent de-isopropylidenation, O-acetylation, delevulinoylation, oxidation, complete deprotection, and N-acetylation yielded 5.

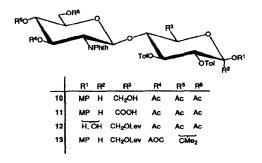
INTRODUCTION

Hyaluronic acid (HA), a unique carbohydrate polymer belonging to the class of glycosaminoglycans, is the major component of several soft connective tissues and has also been found in certain bacterial strains.¹ It is a linear, negatively charged polysaccharide² consisting of a repeating disaccharide unit, namely, $[\rightarrow 4)$ - β -D-GlcpA-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow]_n. The biopolymer is biosynthesised at the innerside of plasma membranes,³ and it plays an important role in structural functions,⁴ cell-cell recognition,⁵ cell migration,⁶ and angiogenesis.⁷ As a medical aid, HA is used in opthalmic surgery⁸ and woundhealing,⁹ and to combat joint diseases.¹⁰ Endothe lial cell growth is inhibited by HA, but stimulated by enzymically generated fragments of HA (3-10 disaccharide units).^{1,7} Isolation of the various oligosaccharides is laborious and sofar mainly mixtures of even numbered oligosaccharides were used in biological testing.^{7,11} The stimulating effect of HA oligosaccharides on angiogenesis initiated a research program on the synthesis of a wider range of medium-sized oligosaccharide elements constituted of even or odd numbers of monosaccharides with 2-acetamido-2-deoxy-D-glucose or D-glucuronic acid at the reducing end. Using these synthetic oligosaccharides it is aimed to study the biological activity of HA oligosaccharides in more detail. In earlier studies we have reported on the organic synthesis of the 4-methoxyphenyl (MP) glycosides of β -D-GlcpA-(1 \rightarrow 3)- β -D-GlcpNAc, β -D-GlcpNAc-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- β -D-GlcpNAc, and β -D-GlcpA-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 4)- β -D-GlcpNAc.¹² This report describes the stereoselective synthesis of a di- and a tetra-saccharide fragment having the MP glycoside of β -D-glucuronic acid at the reducing end, namely, β -D-GlcpNAc-(1 \rightarrow 4)- β -D-GlcpA-OMP and β -D-GlcpNAc-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-GlcpA-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow


RESULTS AND DISCUSSION

For the synthesis of the two oligosaccharides 1 and 5 a series of monosaccharide coupling synthons were designed, namely 3, 1^5 4, 1^2 and 9, 1^2 which in principle also allow the extension to higher oligosaccharides (Schemes 1 and 2). 3, 4, 6-Tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl trichloroacetimidate (3) and 3-O-allyloxycarbonyl-2-deoxy-4, 6-di-O-isopropylidene-2-phthalimido- β -D-glucopyranosyl trichloroacetimidate (9) are the precursors for the 2-acetamido-2-deoxy-D-glucose element in non-reducing terminal and internal position, respectively, whereas 4-methoxyphenyl 6-O-levulinoyl-2, 3-di-O-p-toluoyl- β -D-glucopyranoside (4) is the precursor for the D-glucoronic acid element in glycosidic and internal position.

Scheme 1. Retrosynthetic analysis of disaccharide structure 1. Lev = levulinoyl; MP = 4-methoxyphenyl; Tol = p-toluoyl; Phth = phthaloyl; Ac = acetyl.


Condensation of 3 with 4 (Scheme 1) in dichloromethane at room temperature, using boron trifluoride etherate as a promoter, gave disaccharide 2 (81%), which was delevulinoylated using hydrazine acetate^{16,17} in 1:2 toluene-ethanol to afford 10 (86%). The oxidation of the primary hydroxyl group of the glucose unit in 10 was conducted in two steps, namely first a Swern oxidation with oxalyl chloride and methylsulfoxide¹⁸ followed by oxidation with NaClO₂,¹⁹ and it gave 11 in 68% yield (Scheme 3). Then, 11 was treated with methylsulfine²⁰ in ethanol (de-acylation), followed by selective N-acetylation using acetic anhydride in methanol to give 1 (93%).

Scheme 2. Retrosynthetic analysis of tetrasaccharide structure 5. AOC = allyloxycarbonyl.

Following the retrosynthetic analysis as presented in Scheme 2 for the synthesis of 5, glycosyl donor 7 and glycosyl acceptor 8 were prepared. Demethoxyphenylation²¹ of 2 with ammonium cerium(IV) nitrate (\rightarrow 12, 96%) followed by imidation with trichloroacetonitrile¹⁵ in the presence of 1,8-diazabicyclo[5.4.0]undec-7ene gave 7 (93%). Condensation of 9 with 4 in dichloromethane at room temperature, using boron trifluoride etherate as a promoter, gave disaccharide derivative 13 (90%). De-allyloxycarbonylation of 13 with tetrakis(triphenylphosphine) palladium in tetrahydrofuran and morpholine^{22,23} yielded disaccharide derivative 8 (94%).

Condensation of 7 with 8 in dichloromethane at 0°C, using trimethylsilyl trifluoromethanesulfonate as a promoter afforded tetrasaccharide derivative 14. However, 14 could not be purified on silica; therefore the mixture containing 14 was treated with aqueous trifluoroacetic acid in dichloromethane (de-isopropylidenation) to

Scheme 3.

give 15 in 77% overall yield. After conventional O-acetylation (\rightarrow 6, 99%) and delevulinoylation using hydrazine acetate in 1:2 toluene-ethanol (\rightarrow 16, 87%), a Swern oxidation with oxalyl chloride and methylsulfoxide followed by oxidation with NaClO₂ afforded 17 (76%) (Scheme 4). Finally, 17 was de-acylated with methylamine in ethanol followed by selective N-acetylation using acetic anhydride in methanol. Because the ¹H NMR spectrum showed the presence of one remaining O-acetyl group, an additional treatment with sodium methoxide in methanol was carried out to yield 5 (61%).

Scheme 4.

The synthesised MP glycosides 1 and 5 will be tested in biological systems.

EXPERIMENTAL

General methods.—The ¹H (300 and 500 MHz) and ¹³C (APT [attached proton test], 50 and 75 MHz) NMR spectra were recorded at 25°C with Bruker AC 300, AM 500, or WP-200 spectrometers in CDCl₃ unless stated otherwise. Chemical shifts (δ) are given in ppm relative to the signal for internal Me₄Si (CDCl₃) or internal sodium 4,4-dimethyl-4-silapentane-1-sulfonate (D₂O; indirectly to internal acetone, δ 2.225) for ¹H, and to the signal for internal Me₄Si (CDCl₃; indirectly to CDCl₃, δ 76.9) or external Me₄Si (D₂O; indirectly to internal acetone, δ 31.55) for ¹³C.

Reactions were monitored by TLC on Kieselgel 60 F_{254} (Merck). Detection was effected by examination under UV light and by charring with aq 50% sulfuric acid. Column chromatography was performed on Kieselgel 60 (Merck, 70-230 mesh). Optical rotations were measured for solutions in CH_2Cl_2 , unless stated otherwise, at 20°C with a Perkin-Elmer 241 polarimeter, using a 10-cm 1-mL cell. Solvents were evaporated under reduced pressure at 40°C (bath). All solvents were distilled from the appropriate drying agents.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1-+)-6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranoside (2).----To a solution of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl trichloroacetimidate (3; 320 mg, 0.55 mmol) and 4-methoxyphenyl 6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranoside (4; 228 mg, 0.37 mmol) in CH₂Cl₂ (3.6 mL) containing 4A molecular sieves (0.37 g) was added a solution of M BF₃·Et₂O in CH₂Cl₂ (204 µL). After stirring the mixture for 1 h at room temperature, TLC (1:1 toluene-acetone) showed the disappearance of 4 and the formation of 2 (R_F 0.62). Then the mixture was neutralised with triethylamine, diluted with EtOAc (100 mL), and washed with aq 5% NaCl (30 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (1:1 toluene-acetone) of the residue yielded 2, isolated as a syrup (310 mg, 81%), [α]_D +57 (c 1). ¹H-NMR data: δ 1.793, 1.918, and 1.965 (3 s, each 3 H, 3 Ac), 2.185 (s. 3 H, COCH₂CH₂COCH₃), 2.355 and 2.389 (2 s, each 3 H, 2 COC₆H₄CH₃), 2.36-2.50 and 2.63-2.65 (2 m, each 2 H, COCH₂CH₂COCH₃), 3.706 (s, 3 H, C₆H₄OCH₃), 4.248 (dd, 1 H, J_{2',1'} 8.4, J_{2',3'} 10.6 Hz, H-2'), 5.027 (d, 1 H, J_{1,2} 7.7 Hz, H-1), 5.460 (dd, 1 H, J_{2,3} 8.8 Hz, H-2), 5.514 (d, 1 H, H-1'), 6.704 and 6.823 (2 d, each 2 H, C₆H₄OCH₃), 7.154, 7.195, 7.801, and 7.901 (4 d, each 2 H, 2 COC₆H₄CH₃).

Anal. Calc. for C54H55NO20: C, 62.48; H, 5.34. Found: C, 62.10; H, 5.28.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1- \rightarrow)-2,3-di-O-ptoluoyl- β -D-glucopyranoside (10).—To a solution of 2 (500 mg, 0.48 mmol) in EtOH (69 mL) and toluene (34 mL) was added NH₂NH₂·HOAc (222 mg). The mixture was stirred for 40 min, when TLC (1:1 toluene-EtOAc) showed the conversion of 2 into 10 (R_F 0.55). Then the mixture was concentrated, and column chromatography (1:1 toluene-EtOAc) of the residue yielded 10, isolated as a syrup (390 mg, 86%), [α]_D +86 (*c* 1). NMR data: ¹H, δ 1.799, 1.909, and 1.980 (3 s, each 3 H, 3 Ac), 2.349 and 2.393 (2 s, each 3 H, 2 COC₆H₄-CH₃), 3.704 (s, 3 H, C₆H₄OCH₃), 4.243 (dd, 1 H, J_{2',1'} 8.4, J_{2',3'} 10.7 Hz, H-2'), 5.069 (d, 1 H, J_{1,2} 7.8 Hz, H-1), 5.437 (dd, 1 H, J_{2,3} 9.3 Hz, H-2), 5.627 (d, 1 H, H-1'), 6.701 and 6.805 (2 d, each 2 H, C₆H₄O-CH₃), 7.145, 7.213, 7.795, and 7.909 (4 d, each 2 H, 2 COC₆H₄CH₃); ¹³C, δ 20.2 (2 C) and 20.3 (3 CO-CH₃), 21.3 (COC₆H₄CH₃), 54.7 and 55.2 (C₆H₄OCH₃, C-2'), 60.2 and 60.9 (C-6,6'), 97.8 (C-1'), 100.2 (C-1), 114.2 (2 C), 118.3 (2 C), 150.7, and 155.3 (C₆H₄OCH₃), 164.7 and 164.9 (2 COC₆H₄CH₃), 169.0, 169.8, and 170.2 (3 COCH₃).

Anal. Calc. for C49H49NO18: C, 62.61; H, 5.26. Found: C, 62.04; H, 5.38.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- $(1 \rightarrow 4)$ -2,3-di-O-ptoluoyl- β -D-glucopyranosyluronic acid (11).—To a cold (-78°C) 2 M solution of oxalyl chloride in CH₂Cl₂ (0.52 mL) was added Me₂SO (157 μ L). After stirring for 10 min, a solution of 10 (100 mg, 0.11 mmol) in CH₂Cl₂ (2.0 mL) was added, and the mixture was stirred for 1 h at -78°C, whereby within 30 min a precipitate was observed. Diisopropylethylamine (0.77 mL) was added, and after 10 min the mixture was diluted with EtOAc (35 mL), washed with M HCl (10 mL) and aq saturated NaCl (10 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. To a solution of the residue in t-BuOH (4.36 mL), 2-methylbutene (1.65

T. M. SLAGHEK et al.

mL), and water (2.7 mL) were added NaH₂PO₄ (271 mg) and NaClO₂ (271 mg). After stirring overnight, TLC (10:9:1 CH₂Cl₂-EtOAc-HOAc) showed the conversion of **10** into **11** (R_F 0.65). Then the mixture was concentrated, and a solution of the residue in water was washed with hexane, acidified with M HCl, and extracted with EtOAc (3 x 20 mL). The organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (3:2 CH₂Cl₂-EtOAc followed by 10:9:1 CH₂Cl₂-EtOAc-HOAc) of the residue yielded **11**, isolated as a syrup (69 mg, 68%), [α]_D +4 (*c* 1). ¹H-NMR data: δ 1.790, 1.900, and 1.917 (3 s, each 3 H, 3 Ac), 2.357 (s, 6 H, 2 COC₆H₄CH₃), 3.690 (s, 3 H, C₆H₄OCH₃), 4.045 (d, 1 H, J_{5,4} 9.2 Hz, H-5), 4.252 (dd, 1 H, J_{2,1} * 8.4, J_{2',3'} 10.7 Hz, H-2'), 5.122 (d, 1 H, J_{1,2} 7.3 Hz, H-1), 5.546 (d, 1 H, H-1'), 5.595 (dd, 1 H, J_{2,3} 9.0 Hz, H-2), 6.691 and 6.840 (2 d, each 2 H, C₆H₄OCH₃), 7.159, 7.165, 7.815, and 7.898 (4 d, each 2 H, 2 COC₆H₄CH₃). A small amount of **11** was esterified with diazomethane in ether, and analysed by ¹H NMR: δ 1.800, 1.920, and 1.950 (3 s, each 3 H, 3 Ac), 2.356 and 2.381 (2 s, each 3 H, 2 COC₆H₄CH₃), 3.493 (s, 3 H, CO-OCH₃). 3.707 (s, 3 H, C₆H₄OCH₃), 4.031 (d, 1 H, J_{5,4} 9.2 Hz, H-5), 4.205 (dd, 1 H, J_{2',1'} 8.4, J_{2',3'} 10.7 Hz, H-2'), 5.095 (d, 1 H, J_{1,2} 7.1 Hz, H-1), 5.464 (d, 1 H, H-1'), 5.492 (dd, 1 H, J_{2,3} 8.9 Hz, H-2), 6.700 and 6.814 (2 d, each 2 H, C₆H₄OCH₃), 7.161, 7.189, 7.803, and 7.900 (4 d, each 2 H, 2 COC₆H₄CH₃).

4-Methoxyphenyl O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1- \rightarrow 4)- β -D-glucopyranosyluronic acid (1).—A solution of 11 (69 mg, 70 µmol) in ethanolic 30% methylamine (20 mL) was stirred for 3 days, when TLC (4:2:2:1 *n*-BuOH-EtOH-H₂O-HOAc) showed the conversion of 11 into an intermediate amino compound (R_F 0.70). The mixture was concentrated, and a solution of the residue in MeOH (15.6 mL) and acetic anhydride (219 µL) was stirred for 2 h at 0°C, then concentrated, and 1:1 toluene-MeOH (3 x 15 mL) was evaporated from the residue. Compound 1 was purified by FPLC on Q-Sepharose using a concentration gradient of 0 to 150 mM NaCl. After desalting on Bio-Gel P-2 and lyophilisation, 1 was obtained as an amorphous, white powder (33 mg, 93%), [α]_D -40 (c 1, water). NMR data (D₂O): ¹H, δ 2.068 (s, 3 H, NHCOCH₃), 3.612 (dd, 1 H, $J_{2,3}$ 9.5 Hz, H-2), 3.728 (dd, 1 H, $J_{2',3'}$ 10.2 Hz, H-2'), 3.802 (s, 3 H, C₆H₄OCH₃), 4.576 (d, 1 H, $J_{1',2'}$ 8.4 Hz, H-1'), 4.991 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1), 6.964 and 7.095 (2 d, each 2 H, C₆H₄OCH₃); ¹³C, δ 23.7 (NHCOCH₃), 56.7 and 57.1 (C₆H₄OCH₃, C-2'), 61.9 (C-6'), 102.1 and 102.6 (C-1,1'), 116.4 (2 C), 119.5 (2 C), 152.2, and 156.0 (C₆H₄OCH₃), 175.2 and 176.2 (NHCOCH₃, COOH); FAB-MS *m*/z 504 [M+H]⁺.

O-(3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- $(1\rightarrow 4)$ -6-O-levulinoyl-2,3-di-O-ptoluoyl- α / β -D-glucopyranose (12).—.To a solution of 2 (3.00 g, 2.89 mmol) in toluene (121 mL) and acetonitrile (170 mL) was added water (121 mL) and ammonium cerium(IV) nitrate (16.0 g). After stirring for 75 min, TLC (6:1 CH₂Cl₂-acetone) showed a complete conversion of 2 into 12 (R_F 0.30). Then, the mixture was diluted with EtOAc (300 mL), washed with aq saturated NaHCO₃ (2 x 100 mL) and water (2 x 100 mL). The organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (9:1 CH₂Cl₂-acetone) of the residue yielded 12, isolated as a syrup (2.8 g, 96%), $[\alpha]_D$ +93 (c 1) (α : β 2.7:1). ¹³C-NMR data: δ 20.4, 20.5, and 20.7 (3 COCH₃), 21.6 (COC₆H₄CH₃), 27.7, 29.9, and 38.0 (COCH₂CH₂COCH₃), 54.9 (C-2'), 61.3 and 62.1 (C-6,6'), 90.1 (C-1 α), 95.4 (C-1 β), 97.7 (C-1'), 165.0 and 166.0 (2 COC₆H₄CH₃), 169.3, 170.2, and 170.6 (3 COCH₃), 172.0 (COCH₂CH₂COCH₃), 206.8 (COCH₂CH₂COCH₃).

Anal. Calc. for C47H49NO19: C, 60.57; H, 5.30. Found: C, 60.06; H, 5.25.

O-(3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1-+4)-6-O-levulinoyl-2,3-di-O-p-

toluoyl-α/β-D-glucopyranosyl trichloroacetimidate (7).—To a solution of 12 (2.6 g, 2.8 mmol) in CH₂Cl₂ (8.0 mL) and trichloroacetonitrile (3.0 mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (101 µL). After stirring overnight, TLC (9:1 CH₂Cl₂-acetone) showed a complete conversion of 12 into 7 (R_F 0.47), and the mixture was purified by column chromatography (9:1 CH₂Cl₂-acetone) to yield 7, isolated as a syrup (2.8 g, 93%), [α]_D +80 (*c* 1) (α : β 3:2). NMR data: ¹H, δ 1.789, 1.912, and 1.978 (3 s, each 3 H, 3 Ac), 2.209 (s, 3 H, COCH₂CH₂COCH₃), 2.327 and 2.379 (2 s, each 3 H, 2 COC₆H₄CH₃), 2.27-2.52 and 2.67-2.72 (2 m, each 2 H, COCH₂CH₂COCH₃), 5.585 (d, 1 H, $J_{1',2'}$ 8.1 Hz, H-1'), 6.600 (d, 0.6 H, $J_{1,2}$ 3.7 Hz, H-1 α), 6.631 (d, 0.4 H, $J_{1,2}$ 8.8 Hz, H-1 β); ¹³C, δ 20.3, 20.5, and 20.7 (3 COCH₃), 21.7 (COC₆H₄CH₃), 27.6, 29.9, and 38.0 (COCH₂CH₂COCH₃), 54.9 (C-2'), 61.1 and 61.5 (C-6,6'), 93.0 (C-1 α), 93.6 (C-1 β), 98.3 (C-1'), 160.7 (NHCCl₃), 164.8 and 165.6 (2 COC₆H₄CH₃), 169.2, 170.1, and 170.5 (3 COCH₃), 171.8 (COCH₂-CH₂COCH₃), 206.1 (COCH₂CH₂COCH₃).

Anal. Calc. for C49H49Cl3N2O19: C, 54.68; H, 4.59. Found: C, 54.68; H, 4.50.

4-Methoxyphenyl O-(3-O-allyloxycarbonyl-2-deoxy-4,6-O-isopropylidene-2-phthalimido-B-D-glucopy-carbonyl-2-deoxy-4,6-O-isopropylidene-2-phthalimido-B-D-glucopyranosyl trichloroacetimidate (9; 200 mg, 0.35 mmol) and 4 (143 mg, 0.23 mmol) in CH₂Cl₂ (1.8 mL) containing 4A molecular sieves (0.14 g) was added a solution of M BF3-Et2O in CH2Cl2 (851 µL). After stirring the mixture for 45 min at room temperature, TLC (95:5 CH₂Cl₂-acetone) showed the disappearance of 4 and the formation of 13 (R_F 0.43). Then, triethylamine was added to neutralize and the mixture was diluted with EtOAc (100 mL), washed with aq 5% NaCl, and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (95:5 CH₂Cl₂acetone) of the residue yielded 13, isolated as a syrup (215 mg, 90%), $[\alpha]_D$ +25 (c 1). NMR data: ¹H, δ 1.224 and 1.254 [2 s, each 3 H, C(CH₃)₂], 2.188 (s, 3 H, COCH₂CH₂COCH₃), 2.338 and 2.390 (2 s, each 3 H, 2 COC₆H₄CH₃), 2.37-2.50 and 2.63-2.80 (2 m, each 2 H, COCH₂CH₂COCH₃), 3.695 (s, 3 H, C₆H₄O-CH₃), 4.220 (dd, 1 H, J_{2',3'} 10.2 Hz, H-2'), 4.963 and 5.059 (2 m, each 1 H, COOCH₂CH=CH₂), 5.026 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 5.408 (d, 1 H, $J_{1',2'}$ 8.0 Hz, H-1), 5.490 (dd, 1 H, $J_{2,3}$ 9.2 Hz, H-2), 6.696 and 6.824 (2 d, each 2 H, C₆H₄OCH₃), 7.138, 7.237, 7.810, and 7.921 (4 d, each 2 H, 2 COC₆H₄CH₃); ¹³C, 8 18.4 [C(CH₃)₂], 21.4 (2 COC₆H₄CH₃), 27.4, 29.6, and 37.7 (COCH₂CH₂COCH₃), 55.3 (C-2', C₆H₄O-CH₃), 60.8 and 61.7 (C-6,6'), 68.2 (COOCH₂CH=CH₂), 98.4 (C-1'), 99.3 [C(CH₃)₂], 100.2 (C-1), 114.2 (2 C), 118.7 (2 C), 150.8, and 155.4 (C6H4OCH3), 118.3 (COOCH2CH=CH2), 130.8 (COOCH2CH=CH2), 164.9 (COC₆H₄CH₃), 171.6 (COCH₂CH₂COCH₃).

Anal. Calc. for C55H57NO19: C, 63.75; H, 5.55. Found: C, 63.52; H, 5.64.

4-Methoxyphenyl O-(2-deoxy-4,6-O-isopropylidene-2-phthalimido- β -D-glucopyranosyl)-(1- \rightarrow 4)-6-Olevulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranoside (8).....To a solution of 13 (433 mg, 0.42 mmol) in tetrahydrofuran (7.0 mL) and morpholine (300 µL) was added tetrakis(triphenylphosphine) palladium (83.6 mg). The mixture was boiled under reflux for 30 min, when TLC (9:1 CH₂Cl₂-acetone) showed the de-O-allyloxycarbonylation to be complete (8; R_F 0.29). Then the mixture was diluted with EtOAc (50 mL), washed with aq 5% NaCl (3 x 20 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (9:1 CH₂Cl₂-acetone) of the residue yielded 8, isolated as a syrup (359 mg, 94%), [α]_D +31 (c 1). NMR data: ¹H, δ 1.239 and 1.250 [2 s, each 3 H, C(CH₃)₂], 2.160 (s, 3 H, COCH₂CH₂COCH₃), 2.316 and 2.370 (2 s, each 3 H, 2 $COC_6H_4CH_3$), 3.678 (s, 3 H, $C_6H_4OCH_3$), 5.048 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 5.287 (d, 1 H, $J_{1',2'}$ 8.2 Hz, H-1'), 5.489 (dd, 1 H, $J_{2,3}$ 9.1 Hz, H-2), 6.688 and 6.822 (2 d, each 2 H, $C_6H_4O-CH_3$), 7.132, 7.213, 7.802, and 7.901 (4 d, each 2 H, 2 $COC_6H_4CH_3$); ¹³C, δ 18.6 [C(CH_3)₂], 21.3 (CO-C₆H₄CH₃), 27.4, 29.5, and 37.7 (COCH₂CH₂COCH₃), 55.3 and 56.9 (C-2', C₆H₄OCH₃), 60.9 and 61.8 (C-6,6'), 98.7 (C-1'), 98.2 [C(CH_3)₂], 100.0 (C-1), 114.3 (2 C), 118.6 (2 C), 150.8, and 155.5 (C₆H₄O-CH₃), 164.8 (COC₆H₄CH₃), 171.5 (COCH₂CH₂COCH₃).

Anal. Calc. for C51H53NO17: C, 64.34; H, 5.61. Found: C, 64.33; H, 5.66.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→4)-O-(6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 4)-6-O-levulinoyl-2,3-di-O-p-toluoyl-β-D-glucopyranoside (15).—To a solution of 7 (761 mg, 0.71 mmol) and 8 (269 mg, 0.28 mmol) in CH₂Cl₂ (2.8 mL) containing 4A molecular sieves (283 mg) was added a solution of M CF₃SO₃SiMe₃ in CH₂Cl₂ (66 µL) at 0°C. After stirring the mixture for 60 min at room temperature, TLC (9:1 CH₂Cl₂-acetone) showed the disappearance of 8 and the formation of 14 (R_F 0.50). Then, triethylamine was added to neutralize, and the mixture was diluted with EtOAc (100 mL), washed with aq 5% NaCl (3 x 30 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. The residue was dissolved in CH_2Cl_2 (5.3 mL), and trifluoroacetic acid (300 μ L) and water (37 μ L) were added. After stirring the mixture for 60 min, TLC (85:15 CH₂Cl₂-acetone) showed the de-isopropylidenation to be complete (15; R_F 0.44). Then, the mixture was washed with aq saturated NaHCO₃ (3 x 25 mL) and water (3 x 25 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (9:1 CH₂Cl₂-acetone) of the residue yielded 15, isolated as a syrup (400 mg, 77%), $[\alpha]_D$ +70 (c 1). NMR data: ¹H, δ 1.768, 1.889, and 1.923 (3 s, each 3 H, 3 Ac), 2.162 and 2.166 (2 s, each 3 H, 2 COCH₂CH₂COCH₃), 2.305, 2.341, and 2.380 (3 s, 3,6,3 H, 4 COC₆H₄CH₃), 3.683 (s, 3 H, C₆H₄OCH₃), 4.155 and 4.336 (2 dd, each 1 H, J_{2',1'/2",1"} 8.2 and 8.3 Hz, J2',3'/2",3" 10.7 Hz, H-2',2"), 4.443 and 4.957 (2 d, each 1 H, J1,2/1",2" 7.9 and 7.2 Hz, H-1,1"), 5.025 and 5.414 (2 d, each 1 H, H-1',1"'), 5.087 and 5.410 (2 dd, each 1 H, $J_{2,3/2",3"}$ 8.7 and 9.6 Hz, H-2,2"), 6.667 and 6.779 (2 d, each 2 H, C₆H₄OCH₃), 6.865, 7.055, 7.136, 7.181, 7.279, 7.653, 7.773, and 7.836 (8 d, each 2 H, 4 $COC_6H_4CH_3$); ¹³C, δ 20.2, 20.4, and 20.5 (3 $COCH_3$), 21.5 ($COC_6H_4CH_3$), 27.4, 27.6, 29.2, 29.7, and 37.7 (2 C) (COCH₂CH₂COCH₃), 54.8 and 55.5 (2 C) (C-2', 2''', C₆H₄OCH₃), 61.2 and 62.0 (C-6,6',6"'), 97.5 (C-1',1"'), 99.9 and 100.8 (C-1,1"), 114.4 (2 C), 118.7 (2 C), 150.9, and 155.5 (C₆H₄OCH₃), 164.7 and 165.1 (COC₆H₄CH₃), 169.1, 169.8, and 170.3 (3 COCH₃), 171.6 (COCH₂CH₂COCH₃).

Anal. Calc. for C95H96N2O35: C, 62.49; H, 5.30. Found: C, 62.38; H, 5.42.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- $(1 \rightarrow 4)$ -O-(6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- $(1 \rightarrow 4)$ -6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranoside (6).—To a solution of 15 (313 mg, 0.17 mmol) in pyridine (6.6 mL) and acetic anhydride (6.6 mL) was added 4-dimethylaminopyridine (5 mg). After stirring overnight, TLC (4:1 CH₂Cl₂-acetone) showed the O-acetylation to be complete (6; R_F 0.75), and the mixture was diluted with EtOAc (100 mL), and washed with aq saturated NaHCO₃ (3 x 25 mL) and water (3 x 25 mL). The organic layer was dried (MgSO₄), filtered, concentrated, and co-concentrated with toluene, EtOH, and CH₂Cl₂ (each 3 x 25 mL). Column chromatography (4:1 CH₂Cl₂-acetone) of the residue yielded 6, isolated as a syrup (326 mg, 99%), $[\alpha]_D$ +38 (*c* 1). NMR data: ¹H, δ 1.763, 1.861, 1.871, 1.890, and 1.940 (5 s, each 3 H, 5 Ac), 2.159 and 2.226 (2 s, each 3 H, 2 COCH₂CH₂COCH₃), 2.294, 2.333, 2.363, and 2.373 (4 s, each 3 H, 4 COC₆H₄CH₃), 3.683 (s, 3 H, C₆H₄OCH₃), 4.282 and 4.936 (2 d, each 1 H, $J_{1,2/1",2"}$ 7.6 and 7.4 Hz, H-1,1"), 5.037 and 5.282 (2 d, each 1 H, $J_{1,2/1",2"}$ 8.3 and 8.1 Hz, H-1',1""), 6.670 and 6.769 (2 d, each 2 H, C₆H₄OCH₃), 7.001, 7.047, 7.123, 7.132, 7.355, 7.685, 7.751, and 7.807 (8 d, each 2 H, 4 COC₆H₄CH₃); ¹³C, δ 19.6, 20.1, 20.4, 20.5, and 20.6 (5 COCH₃), 21.5 (COC₆H₄CH₃), 27.4, 27.5, 29.1, 29.7, and 37.7 (2 C) (2 COCH₂CH₂COCH₃), 54.5, 55.2, and 55.4 (C-2',2"', C₆H₄O-CH₃), 61.4 and 62.4 (C-6,6',6'',6'''), 97.4 and 97.5 (C-1',1'''), 99.9 and 100.6 (C-1,1"), 114.2 (2 C), 118.6 (2 C), 150.7, and 155.4 (C₆H₄OCH₃), 164.7, 164.9 (2 C), and 165.0 (4 COC₆H₄CH₃), 168.4, 169.1, 169.9, 170.2, and 170.4 (5 COCH₃), 171.5 and 171.7 (2 COCH₂CH₂COCH₃).

Anal. Calc. for C99H100N2O37: C, 62.26; H, 5.28. Found: C, 62.15; H, 5.29.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1-4)-O-(2,3-di-Op-toluoyl-β-D-glucopyranosyl)-(1-3)-O-(4,6-di-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1-4)-2,3-di-O-p-toluoyl-β-D-glucopyranoside (16).—To a solution of 6 (337 mg, 0.18 mmol) in EtOH (25.2 mL) and toluene (12.5 mL) was added NH₂NH₂·HOAc (162 mg). After stirring for 30 min, TLC (4:1 CH₂Cl₂-acetone) showed the reaction to be complete (16; $R_{\rm F}$ 0.63), and the mixture was concentrated. Column chromatography (9:1 CH₂Cl₂-acetone) of the residue yielded 16, isolated as a syrup (262 mg, 87%), [α]_D +59 (*c* 1). NMR data: ¹H, δ 1.779, 1.836, 1.882, 1.913, and 1.946 (5 s, each 3 H, 5 Ac), 2.337 and 2.362 (2 s, each 6 H, 4 COC₆H₄CH₃), 3.690 (s, 3 H, C₆H₄OCH₃), 4.504 and 4.990 (2 d, each 1 H, $J_{1,2/1",2"}$ 7.2 and 7.7 Hz, H-1,1"), 5.149 and 5.458 (2 d, each 1 H, $J_{1',2'/1"',2'''}$ 8.4 Hz, H-1',1"'), 6.678 and 6.762 (2 d, each 2 H, C₆H₄OCH₃), 7.033, 7.118, 7.124, 7.142, 7.444, 7.721, 7.755, and 7.816 (8 d, each 2 H, 4 COC₆H₄CH₃); ¹³C, δ 20.0-20.2 (COCH₃), 20.4 and 21.4 (3 C) (4 COC₆H₄CH₃), 54.5, 55.2, and 55.3 (C-2',2''', C₆H₄O-CH₃), 60.2, 60.4, 61.0, and 61.4 (C-6,6',6'''), 97.7 (C-1',1'''), 99.3 and 100.1 (C-1,1''), 114.3 (2 C), 118.3 (2 C), 150.7, and 155.4 (C₆H₄OCH₃), 164.6 and 164.9 (COC₆H₄CH₃), 169.0, 169.2 (2 C), 169.8, and 170.2 (5 COCH₃).

Anal. Calc. for C89H88N2O33: C, 62.38; H, 5.18. Found: C, 62.46; H, 5.28.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1- \rightarrow 4)-O-(2,3-di-O-p-toluoyl- β -D-glucopyranosyluronic acid)-(1 \rightarrow 3)-O-(4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 4)-2,3-di-O-p-toluoyl- β -D-glucopyranosyluronic acid (17).—To a cold (-78°C) 2 M solution of oxalyl chloride in CH₂Cl₂ (645 µL) was added Me₂SO (195 µL), and the mixture was stirred for 10 min. Then a solution of 16 (113 mg, 65.9 µmol) in CH₂Cl₂ (1.1 mL) was added, and the mixture was stirred for 5 h, whereby within 15 min a precipitate was observed. Diisopropylethylamine (0.96 mL) was added, and after 10 min the mixture was diluted with EtOAc (50 mL), and washed with M HCl (2 x 15 mL) and aq saturated NaCl (2 x 15 mL). The organic layer was dried (MgSO₄), filtered, and concentrated. To a solution of the residue in *t*-BuOH (5.4 mL), 2-methylbutene (2.0 mL), and water (3.4 mL) were added NaH₂PO₄ (336 mg) and NaClO₂ (336 mg). The mixture was stirred overnight, when TLC (5:5:1 CH₂Cl₂-EtOAc-HOAc) showed a complete conversion of 16 into 17 (R_F 0.83). Then, the mixture was concentrated, and a solution of the residue in water was washed with hexane, acidified with M HCl, and extracted with EtOAc (3 x 30 mL). The organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (3:2 CH₂Cl₂-EtOAc followed by 5:5:1 CH₂Cl₂- EtOAc-HOAc) of the residue yielded 17, isolated as a syrup (88 mg, 76%), $[\alpha]_D$ +6 (c 1). NMR data: ¹H, δ 1.757, 1.824, 1.842, and 1.881 (4 s, 3,3,3,6 H, 5 Ac), 2.298, 2.333, 2.344, and 2.382 (4 s, each 3 H, 4 COC₆H₄CH₃), 3.689 (s, 3 H, C₆H₄OCH₃), 3.783 and 3.859 (2 d, each 1 H, J_{5,4/5",4"} 9.5 and 9.0 Hz, C-5,5"), 4.438 and 5.057 (2 d, each 1 H, J_{1,2/1",2"} 7.5 and 7.7 Hz, H-1,1"), 5.370 and 5.567 (2 d, each 1 H, J_{1',2'/1",2}" 8.3 and 8.4 Hz, H-1',1"), 6.677 and 6.798 (2 d, each 2 H, C₆H₄OCH₃), 7.006, 7.066, 7.114, 7.147, 7.369, 7.706, 7.782, and 7.832 (8 d, each 2 H, 4 COC₆H₄CH₃); ¹³C, δ 20.2, 20.3 (2 C), and 20.5 (2 C) (5 COCH3), 21.5 (COC6H4CH3), 54.4, 55.2, and 55.5 (C-2',2''', C6H4OCH3), 61.6 and 62.0 (C-6,6', 6",6"), 97.3 and 97.7 (C-1',1"), 100.4 and 100.7 (C-1,1"), 114.4 (2 C), 118.5 (2 C), 150.6, and 155.5 (C₆H₄OCH₃), 163.4 (COOH), 164.8, 164.9, 165.0, and 165.1 (4 COC₆H₄CH₃), 169.7, 170.0, 170.1, 170.8, and 171.1 (5 COCH₃). A small amount of 17 was esterified with diazomethane in ether, and analysed with ¹H NMR: δ 1.767, 1.884, 1.894, and 1.908 (4 s, 6,3,3,3 H, 5 Ac), 2.308, 2.340, and 2.385 (3 s, 3,6,3 H, 4 COC₆H₄CH₃), 3.386 and 3.577 (2 s, each 3 H, 2 COOCH₃), 3.686 (s, 3 H, C₆H₄OCH₃), 3.722 and 3.794 (2 d, each 1 H, J_{5.4/5",4"} 9.7 and 8.9 Hz, C-5,5"), 4.355 and 5.002 (2 d, each 1 H, J_{1.2/1",2"} 7.6 and 7.0 Hz, H-1,1"), 4.971 and 5.285 (2 d, each 1 H, $J_{1',2'/1'',2''}$ 8.4 and 8.3 Hz, H-1',1"), 6.672 and 6.764 (2 d, each 2 H, C₆H₄OCH₃), 6.999, 7.074, 7.122, 7.131, 7.353, 7.693, 7.761, and 7.828 (8 d, each 2 H, 4 $COC_6H_4CH_3$).

4-Methoxyphenyl O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(β -D-glucopyranosyluronic acid)-(1 \rightarrow 3)-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 4)- β -D-glucopyranosyluronic acid (5).—A solution of 17 (50 mg, 29 µmol) in ethanolic 33% methylamine (40 mL) was stirred for 3 days, and after concentration the residue was taken up in MeOH (6.4 mL) and acetic anhydride (179.6 µL). The solution was stirred for 2 h at 0°C, when TLC (4:2:2:1 *n*-BuOH-EtOH-H₂O-HOAc) showed the formation of 5 (R_F 0.55). The mixture was concentrated, and 1:1 MeOH-toluene (3 x 30 mL) was evaporated from the residue. Then the residue was dissolved in MeOH, and NaOMe was added until pH 10. After stirring overnight, 5 drops of water were added and the stirring was continued for 2 h at room temperature. Then Dowex 50 (H⁺) was added to neutralize, and the mixture was filtered and concentrated. Gelfiltration of the residue on Sephadex G-10 (water) followed by Bio-Gel P-2 (water), yielded 5, isolated after lyophilisation as a white, amorphous powder (16 mg, 61%), [α]_D -45 (c 1, water). ¹H-NMR data (D₂O): δ 2.026 and 2.046 (2 s, each 3 H, NHCOCH₃), 3.810 (s, 3 H, C₆H₄OCH₃), 4.491, 4.541, and 4.591 (3 d, each 1 H, $J_{1',2'/1'',2''/1''',2'''}$ 7.8, 8.2, and 8.4 Hz, H-1',1'', 1'''), 5.015 (d, 1 H, $J_{1,2}$ 7.3 Hz, H-1), 6.977 and 7.102 (2 d, each 2 H, C₆H₄OCH₃); FAB-MS *m/z* 883 [M+H]⁺.

ACKNOWLEDGMENTS

The research of Dr. T.M. Slaghek has been made possible by a fellowship of the Royal Netherlands Academy of Art and Sciences. The authors would like to thank Mrs. A.C.H.T.M. van der Kerk-van Hoof for recording the FAB-MS spectra.

REFERENCES

- 1. Laurent, T. C.; Fraser, J. R. E. FASEB J. 1992, 6, 2397-2404.
- 2. Meyer, K. Fed. Proc., Fed. Am. Chem. Soc. Exp. Biol. 1958, 17, 1075-1077.
- 3. Prehm, P. Biochem. J. 1984, 220, 597-600.
- 4. Aruffo, A.; Stamenkovic, I.; Melnick, M.; Underhill, C. B.; Seed, B. Cell 1990, 61, 1303-1313.
- Toole, B. P. In Cell Biology of Extracellular Matrix, Hay, E. D. Ed.; Plenum Press, New York, USA, 1991, pp. 305-341.
- 6. Ellis, I.; Grey, A. M.; Schor, A. M.; Schor, S. L. J. Cell Sci. 1992, 102, 447-456.
- West, D. C.; Kumar, S. In *The Biology of Hyaluronan*, Evered, D.; Whelan, J. Eds.; Ciba Foundation Symposium 143, Wiley, Chichester, UK, 1989, pp. 187-207.
- Balazs, E. A.; Denlinger, J. L. In *The Biology of Hyaluronan*, Evered, D.; Whelan, J. Eds.; Ciba Foundation Symposium 143, Wiley, Chichester, UK, 1989, pp. 265-280.
- 9. King, S. R.; Hickerson, W. L.; Proctor, K. G.; Newsome, A. M. Surgery 1991, 109, 76-84.
- Engström-Laurent, A. In *The Biology of Hyaluronan*, Evered, D.; Whelan, J. Eds.; Ciba Foundation Symposium 143, Wiley, Chichester, UK, **1989**, pp. 233-247.
- 11. West, D. C.; Hampson, I. N.; Arnold, F.; Kumar, S. Science 1985, 228, 1324-1326.
- Slaghek, T. M.; Nakahara, Y.; Ogawa, T.; Kamerling, J. P.; Vliegenthart, J. F. G. Carbohydr. Res. 1994, 255, 61-85.
- 13. Slaghek, T. M.; Hyppönen, T.K.; Ogawa, T.; Kamerling, J. P.; Vliegenthart, J. F. G. Tetrahedron Lett. 1993, 34, 7939-7942.
- 14. Carter, M. B.; Petillo, P. A.; Anderson, L.; Lerner, L. E. Carbohydr. Res. 1994, 258, 299-306.
- 15. Schmidt, R. R.; Michel, J.; Roos, M. Liebigs Ann. Chem. 1984, 1343-1357.
- 16. Van Boom, J. H.; Burgers, P. M. J. Tetrahedron Lett. 1976, 4875-4878.
- 17. Jeker, N.; Tamm, C. Helv. Chim. Acta 1988, 71, 1895-1903.
- 18. Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651-1660.
- 19. Lindgren, B. O.; Nilsson, T. Acta Chem. Scand. 1973, 27, 888-890.
- 20. Motawia, M. S.; Wengel, J.; Abdel-Megid, A. E.-S.; Pedersen, E. B. Synthesis 1989, 384-387.
- 21. Fukuyama, T.; Laird, A. A.; Hotchkiss, L. M. Tetrahedron Lett. 1985, 26, 6291-6292.
- 22. Kunz, H.; Waldmann, H. Angew. Chem. 1984, 96, 49-50.
- Hayakawa, Y.; Kato, H.; Uchiyama, M.; Kajino, H.; Noyori, R. J. Org. Chem. 1986, 51, 2400-2402.

(Received 16 September 1994)